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1 Noether’s Principle and the Energy-Momemtum Tensor

1.1 Noether’s principle

Let’s continue our discussion of Noether’s principle with an updated version of the slogan
we gave last time. The slogan for the principle is ‘(continuous) symmetries give rise to
conservation laws.” The implication in the other direction is not always the case; for more
on the reverse, you can see, for example, Carter’s constant, which is a “hidden symmetry”
for geodesics on Kerr spacetime.

Theorem 1.1. Consider the Lagrangian action Fu fU (Du,u,z)dx. Suppose there
exists a continuous symmetry (u-(x), X;(x)) of the actzon (with u; : U — R and X,
R — R? a diffeomorphism for each T), in the sense that

/L(DuT( ) ur(z), )d:r—/ L(Du,u, x) dz,
U U(T)
where U(1) := X-(U). Then

Oy (M0, L(Du,u, ) — L(Du, u, 2)V7)=m <aaﬂ (Op, L(Du, u,x)) — 9, L(Du, u,a:)) ,

where m = %u!T:(), = Uy |r=o, VI = 38TXJ|T 0, and Xo(z) = x.

Lemma 1.1. Let f. = f-(x), and let U; be a “smooth” family of C*° domains, i.e. there
exist a family of diffeomorphisms X, : RY toR? such that U, = X, (U). Let V(z) =

aaTXT(m)‘ for x € OUy. Then

7=0
d
d'r/(v]‘r fT(CL') dx

Here is the proof of the theorem, assuming the lemma:
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dx + foV - v.
7=0 Uo or
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Proof.
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Using the Euler-Lagrange euqation,
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Putting these together, we get

0 0
) v dA =
/ ( ]L m — LV )y]dA / ( j((?p].L)—i—azL)md:c.

By the divergence theorem, the left hand side is

/3 <8Lm LV])d
U ap]

since U is arbitrary. O

Integrating by parts,

The lemma gives

9 (RHS)

= / LViv; dA.
7=0 ou

Here is a proof of this lemma, using the fact that the derivative of the Heaviside function
is the delta distribution. (A more standard way to prove this is to use a change of variables
to turn one of the integrals into a volume integral.)

Proof. Here is a sketch of the idea. Without loss of generality, let f; = f, where f €
C>®(R%) and supp f C B,(xg). Choose zq so that U N B,(zg) = {z? > ~v(z!,..., 271}



So X¢_—~.(X",) is the defining function for OU..

Then
/ Fdo = / 1y fde = /H(x" () f () da.

T

Now we can differentiate

or [ HEE e r@yas| = [HE 0w L6 = 9,00) Sy ds

u(X_T) u(X_7 5 o

The &g part gives us the surface measure on QU times m

(=Vu)
f Tl V dA.
—

v

Remark 1.1. In the view of distribution theory, the divergence theorem is precisely telling

us about the derivative of this kind of indicator function.

Example 1.1. Consider the action

1 1
Fl6) = [ ~310:02 + 31D, d

so L = —3p3 + 3|ps|*. Let ¢ : R — C, and let ¢;(z)e""u(z) and X,(z) = z. Then
Noether’s principle tells us that there is an associated conservation law for the wave equa-

tion: 9,J" = 0, where L ) _
=Im(¢0i¢),  J7 =1Im(¢0;0).



This is called the conservation of the charge-current vector. J? is the natural change
density, and J7 is the natural wave density if we want to couple the wave equation with
Maxwell’s equations.

In the case of the Schrodinger equation, this type of computation was carried out by
Weyl. This gives rise to gauge theory. More examples can be found in Evans’ book.

1.2 The energy-(stress)-momentum tensor

Here is useful alternate formulation of Noether’s principle. Our setting now is that U C M,
where M is a manifold with metric g (¢ may be Riemannian or Lorentzian or pseudo-
Riemannian). Assume that

L(Du,u,x) = £(du,u, g)y/det g,
so the action looks like

Flu] = /Uﬁ(du,u,g)\/ | det g dx.

This is invariant under change of coordinates, and the claim is that Noether’s principle will
give us a conserved quantity that we call the energy-momentum tensor.

Theorem 1.2. Assume that F is of the above form, and define

1
O 4l

TP‘7V —
0guw 2

Then the covariant derivative associated with g satisfies
Vv, T =0
if u satisfies the Fuler-Lagrange equation.

Proof. Consider a compactly supported 1-parameter family of diffeomorphisms X, : U —
U such that Xo(x) = 2 and such that for all 7, X,(z) = = outside some K CC U. The
invariance looks like

/E(du,u,g)\/\detg\dx:/E(d(uoXT),uoXT,X:g)\/\detX;*gda:
U U

Now p
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Term I vanishes via the Euler-Lagrange equation. In fact, I = [ (—8M(%£)+8Z[/)VU dx,
where V(z) = %XT(.%)‘T:(). For term 11, we have

9 o . J—
/ [’(dua u?Q)EXTgM,V | detg‘

8gu71/ =0

1 detg & det XZg|-—o
~L(d : T V] detg|d

~
% log det X g|-—=o

where we have used

2\/|det | —léﬁldet |
87’ g =0 21/|detg’a7' 9

1 detg 11
I dt ) p— = - — Tdt )= dt .
_2|detg|8T et gr|r=o 2detga( et gr)|r=0v/| det g|

From elementary differential geometry, we have a name for this: this is the Lie derivative

-
E(XTQ)I%V

= ﬁvgu,u = VMVV + VVVN'

7=0
How do we differentiate the determinant function? First, note that we can differentiate
near the identity:

9 det( +7A)
or

Now if we let By = I and %Br!rzo = A, then

0 0
— det(B, = —det(I +7A 2 = tr A.
o et( )TZO o et(I +7 +O(T))7—:0 r
Now if Cp = M (which is invertible) and 8%07 = A’, then
7=0
g det(Cr)| = 9 det(M~Y(1))| detM
or Y, Or =0
= det M tr(M 1A',
so that 3
- — —1 47
5 log det C » tr(M™A).

Now we can deal with the term % log det X*g|,—o as

9 * — - v
5, logdet X2glr—o = tx(g "Lvg) = (g7 )" (Lvg)uw



All in all, we see that

1
II:/< 0 L’(g_l)“”’£> Lvg, +/|detg|dx
~——
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V. VetV V,
Thsw =TV,

:2/ THYN V| det g| dx

U

= —2/(VMT“’”)VV\/|detg|dx
U

=0

for all X;. Thus, V,TH" = 0.

Example 1.2 (E-M for Laplace/wave equation). Here, £ = (g7!)*¥8,udvu, so

1
T"Y = Jyud,u — 59%1/8”“8”“'

We can see that
0 0 - 0
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