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1 Nöether’s Principle and the Energy-Momemtum Tensor

1.1 Nöether’s principle

Let’s continue our discussion of Nöether’s principle with an updated version of the slogan
we gave last time. The slogan for the principle is ‘(continuous) symmetries give rise to
conservation laws.” The implication in the other direction is not always the case; for more
on the reverse, you can see, for example, Carter’s constant, which is a “hidden symmetry”
for geodesics on Kerr spacetime.

Theorem 1.1. Consider the Lagrangian action F [u] =
∫
U L(Du, u, x) dx. Suppose there

exists a continuous symmetry (uτ (x), Xτ (x)) of the action (with uτ : U → R and Xτ :
Rd → Rd a diffeomorphism for each τ), in the sense that∫

U
L(Duτ (x), uτ (x), x) dx =

∫
U(τ)

L(Du, u, x) dx,

where U(τ) := Xτ (U). Then

∂xj (m∂pjL(Du, u, x)− L(Du, u, x)V j) = m

(
∂

∂xj
(∂pjL(Du, u, x))− ∂zL(Du, u, x)

)
,

where m = ∂
∂τ u|τ=0, u = uτ |τ=0, V j = ∂

∂τX
j
τ |τ=0, and X0(x) = x.

Lemma 1.1. Let fτ = fτ (x), and let Uτ be a “smooth” family of C∞ domains, i.e. there
exist a family of diffeomorphisms Xτ : Rd toRd such that Uτ = Xτ (U). Let V (x) =

∂
∂τXτ (x)

∣∣∣∣
τ=0

for x ∈ ∂U0. Then

d

dτ

∫
Uτ

fτ (x) dx

∣∣∣∣
τ=0

=

∫
U0

∂

∂τ
fτ (x)

∣∣∣∣
τ=0

dx+

∫
∂U0

f0V · ν.

Here is the proof of the theorem, assuming the lemma:
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Proof.

∂

∂τ
(LHS)

∣∣∣∣
τ=0

=
∂

∂τ

∫
U
L(Duτ (x), uτ (x), x) dx

∣∣∣∣
τ=0

=

∫
U

∂

∂τ
L(Duτ (x), uτ (x), x)

∣∣∣∣
τ=0

dx

Using the Euler-Lagrange euqation,

=

∫
U

∂

∂j
L · ∂xjm+

∂

∂z
L ·mdx

Integrating by parts,

=

∫
U

(
−∂xj

(
∂

∂pj
L

)
+

∂

∂z
L

)
mdx+

∫
∂U

∂

∂pj
L ·mνj dA.

The lemma gives
∂

∂τ
(RHS)

∣∣∣∣
τ=0

=

∫
∂U
LV jνj dA.

Putting these together, we get∫
∂U

(
∂

∂pj
L ·m− LV j

)
νj dA =

∫
U

(
− ∂

∂xj
(∂pjL) + ∂zL

)
mdx.

By the divergence theorem, the left hand side is∫
U
∂xj

(
∂

∂pj
L ·m− LV j

)
dx.

since U is arbitrary.

Here is a proof of this lemma, using the fact that the derivative of the Heaviside function
is the delta distribution. (A more standard way to prove this is to use a change of variables
to turn one of the integrals into a volume integral.)

Proof. Here is a sketch of the idea. Without loss of generality, let fτ = f , where f ∈
C∞c (Rd) and supp f ⊆ Br(x0). Choose x0 so that U ∩ Br(x0) = {xd > γ(x1, . . . , xd−1)}.
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So Xd
−τ − γτ (X ′−τ ) is the defining function for ∂Uτ .

Then ∫
Uτ

f dx =

∫
1Uτ f dx =

∫
H(xn − γ(x′))f(x) dx.

Now we can differentiate

∂

∂τ

∫
H(Xd

τ − γτ (X ′τ )︸ ︷︷ ︸
u(X−τ )

)f(x) dx

∣∣∣∣
τ=0

=

∫
H ′(Xn

τ − γ0(x′)︸ ︷︷ ︸
u(X−τ )

)
∂

∂τ
(xn − γτ (x′))︸ ︷︷ ︸
∂
∂τ
u(X−τ )|τ=0

·f(x) dx

=

∫
δ0(U(X0)) ∂ju ·

∂

∂τ
xj︸ ︷︷ ︸

∇u·V j

∣∣∣∣
τ=0

· f(x) dx

The δ0 part gives us the surface measure on ∂U times 1
|∇u(x)|

=

∫
∂U
f

(−∇u)

|∇u|︸ ︷︷ ︸
ν

·V dA.

Remark 1.1. In the view of distribution theory, the divergence theorem is precisely telling
us about the derivative of this kind of indicator function.

Example 1.1. Consider the action

F [φ] =

∫
−1

2
|∂tφ|2 +

1

2
|Dxφ|2 dx,

so L = −1
2p

2
0 + 1

2 |px|
2. Let φ : R1+d → C, and let φτ (x)eiτu(x) and Xτ (x) = x. Then

Nöether’s principle tells us that there is an associated conservation law for the wave equa-
tion: ∂µJ

µ = 0, where
J0 = Im(φ∂tφ), J j = Im(φ∂jφ).
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This is called the conservation of the charge-current vector. J0 is the natural change
density, and J j is the natural wave density if we want to couple the wave equation with
Maxwell’s equations.

In the case of the Schrödinger equation, this type of computation was carried out by
Weyl. This gives rise to gauge theory. More examples can be found in Evans’ book.

1.2 The energy-(stress)-momentum tensor

Here is useful alternate formulation of Nöether’s principle. Our setting now is that U ⊆M,
where M is a manifold with metric g (g may be Riemannian or Lorentzian or pseudo-
Riemannian). Assume that

L(Du, u, x) = L(du, u, g)
√
|det g|,

so the action looks like

F [u] =

∫
U
L(du, u, g)

√
|det g| dx.

This is invariant under change of coordinates, and the claim is that Nöether’s principle will
give us a conserved quantity that we call the energy-momentum tensor.

Theorem 1.2. Assume that F is of the above form, and define

Tµ,ν =
∂

∂gµ,ν
L+

1

2
(g−1)µ,νL.

Then the covariant derivative associated with g satisfies

∇µTµ,ν = 0

if u satisfies the Euler-Lagrange equation.

Proof. Consider a compactly supported 1-parameter family of diffeomorphisms Xτ : U →
U such that X0(x) = x and such that for all τ , Xτ (x) = x outside some K ⊆⊆ U . The
invariance looks like∫

U
L(du, u, g)

√
| det g| dx =

∫
U
L(d(u ◦Xτ ), u ◦Xτ , X

∗
τ g)
√
| detX∗τ g| dx

Now
d

dτ
(LHS)

∣∣∣∣
τ=0

= 0,

whereas

d

dτ
(RHS)

∣∣∣∣
τ=0

=

(
∂

∂τ
falls on u ◦Xτ

)
︸ ︷︷ ︸

I

+

(
∂

∂τ
falls on X∗τ g

)
︸ ︷︷ ︸

II
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Term I vanishes via the Euler-Lagrange equation. In fact, I =
∫

(−∂µ( ∂
∂pµ
L)+∂zL)V u dx,

where V (x) = ∂
∂τXτ (x)|τ=0. For term II, we have∫
∂

∂gµ,ν
L(du, u, g)

∂

∂τ
X∗τ gµ,ν

∣∣∣∣
τ=0

√
|det g|

+
1

2
L(du, u, g) · det g

|det g|

∂
∂τ detX∗τ g|τ=0

| det g|︸ ︷︷ ︸
∂
∂τ

log detX∗τ g|τ=0

√
| det g| dx,

where we have used

∂

∂τ

√
|det gτ |

∣∣∣∣
τ=0

=
1

2

1√
|det g|

∂

∂τ
| det gτ |

=
1

2

det g

|det g|
∂τ det gτ |τ=0 =

1

2

1

det g
∂τ (det gτ )|τ=0

√
|det g|.

From elementary differential geometry, we have a name for this: this is the Lie derivative

∂

∂τ
(X∗τ g)µ,ν

∣∣∣∣
τ=0

= Lvgµ,ν = ∇µVν +∇νVµ.

How do we differentiate the determinant function? First, note that we can differentiate
near the identity:

∂

∂τ
det(I + τA)

∣∣∣∣
τ=0

= tr(A).

Now if we let B0 = I and ∂
∂τBτ |τ=0 = A, then

∂

∂τ
det(Bτ )

∣∣∣∣
τ=0

=
∂

∂τ
det(I + τA+O(τ2))

∣∣∣∣
τ=0

= trA.

Now if C0 = M (which is invertible) and ∂
∂τCτ

∣∣∣∣
τ=0

= A′, then

∂

∂τ
det(Cτ )

∣∣∣∣
τ=0

=
∂

∂τ
det(M−1(τ))

∣∣∣∣
τ=0

detM

= detM tr(M−1A′),

so that
∂

∂τ
log detCτ

∣∣∣∣
τ=0

= tr(M−1A′).

Now we can deal with the term ∂
∂τ log detX∗τ g|τ=0 as

∂

∂τ
log detX∗τ g|τ=0 = tr(g−1LV g) = (g−1)µ,ν(LV g)µ,ν
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All in all, we see that

II =

∫ (
∂

∂gµ,ν
L1

2
(g−1)µ,νL

)
︸ ︷︷ ︸

Tµ,ν=T ν,µ

LV gµ︸ ︷︷ ︸
∇µVν+∇νVµ

√
| det g| dx

= 2

∫
U
Tµ,ν∇µVν

√
| det g| dx

= −2

∫
U

(∇µTµ,ν)Vν
√
|det g| dx

= 0

for all Xτ . Thus, ∇µTµ,ν = 0.

Example 1.2 (E-M for Laplace/wave equation). Here, L = (g−1)µ,ν∂µu∂νu, so

Tµ,ν = ∂µu∂νu−
1

2
gµ,ν∂

νu∂νu.

We can see that

∂

∂gµ,ν
L =

∂

∂gµ,ν
(g−1)µ

′,ν′ ∂

∂(g−1)µ′,ν′
L = −(g−1)µ,µ

′
(g−1)ν,ν

′ ∂

∂(g−1)µ′,ν′
L.
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